对于任意的正整数l,强连通图G的顶点子集D被称为距离l-控制集。是指对于任意顶点V不属于D,D中至少含有一个顶点u,使得距离dG(u,v)≤l.图G距离l-控制数re(G)是指G中所有距离l-控制集的基数的最小者.本文给出了广义de Bruijn和广义Kautz有向图的距离l-控制数的上界和下界。并且给出当它们的距离2-控制数达到下界时的一个充分条件.从而得到对于de Bruijn有向图B(d,k)的距离2-控制数r2(B(d,k))=[d^k/(d^2+d+1)].在该文结尾,我们猜想Kautz有向图K(d,k)的距离2-控制数r2(K(d,k))=[(d^k+d^k-1)/(d^2+d+1)].
The distance l-domination number rl(G) of a strongly connected digraph G is the minimum number r for which there is a set D 包含 V(G) with cardinality r such that any vertex v 不属于 D can be reached within distance l from some vertex in D. In this paper, we establish a lower bound and an upper bound for rl of a generalized de Bruijn digraph and a generalized Kautz digraph, and also give a sufficient condition for these digraphs whose r2 are equal to the lower bounds. As a consequence, for the de Bruijn digraph B(d, k), we determine that r2(B(d, k)) = [d^k/(d^2+d+1)] . At the end of this paper, we conjecture r2(K(d,k))=[(d^k+d^k-1)/(d^2+d+1)]