(d,k)独立数是分析互连网络性能的一个重要参数.对于任意给定的图G和正整数d和k,确定G的(d,k)独立数问题是一个NPC问题.因此,确定一些特殊图的(d,k)独立数显得很重要.本文确定了k维超立方体网络的(d,k)独立数等于2,如果d=k≥4或者d=k一1〉6以及αtd,k-t(Qk)=αd,k(Qk),其中0≤t≤k-2,1≤d≤k-t-1.
The (d, k)-independence number of a connected graph G is an important parameter for analysing performance of interconnection networks. It has been proved to be an NPC problem to determine the exact value of (d, k)-independence number of any graph for given d and k. Thus, it becomes very important to determine (d, k)-independence numbers of some special graphs for given values of d and k. This paper determines that (d, k)-independence number of the k-dimensional hypercube network is equal to two for d = k ≥ 4 or d = k - 1 ≥ 6; and also αCd,k-t(Qk) = αCd, k(Qk), where 0 ≤t ≤ k - 2 and 1 ≤d≤k-t-1.