以马来松香乙二醇丙烯酸酯(EGMRA)和丙稀酰胺(AM)为聚合单体,采用悬浮聚合法合成马来松香乙二醇丙烯酸酯-丙稀酰胺二元共聚物(松香基聚合物)。采用静态法研究该聚合物对葛根素吸附过程的热力学和动力学特性,对吸附过程进行控制机理判断。结果表明:该聚合物对葛根素具有良好的吸附能力,最佳吸附条件为:以体积分数为40%乙醇为溶剂配制葛根素溶液,质量浓度为6.0mg/mL,聚合物为20-40目,吸附温度25-50℃,振荡频率80r/min,平衡吸附时间为2h。饱和吸附量Qe为23.01mg/g。拟二级吸附动力学模型可较好的描述吸附过程,膜扩散和粒扩散为此吸附体系控制步骤,通过菲克定律计算出膜扩散系数D为5.22×10^-8cm^2/s,粒扩散系数D为3.20×10^-8cm^2/s。
In this study, a copolymer was synthesized using suspension polymerization from ethylene glycol maleic rosinate acrylate (EGMRA) and acrylamide (AM), and its thermodynamic and kinetic characteristics for adsorbing puerarin and mechanism for controlling puerarin adsorption were analyzed. The prepared copolymer showed good adsorption performance towards puerarin. The optimum static adsorption conditions were obtained as follows: 40% ethanol as solvent for puerarin at a concentration of 6.0 mg/mL, adsorbent particle size 20-40 mesh, and equilibrium adsorption at a temperature between 25 ℃ and 50℃ with shaking at a speed of 80 r/min. Under these conditions, the equilibrium adsorption capacity (Qe) was 23.01 mg/g. A pseudo second-order equation that could well describe the adsorption process was established. Film diffusion and particle diffusion were found to be key steps in the adsorption system, and the diffusion coefficients were calculated using the Fick equation to be 5.22 ×10^-8cm^2/s and 3.20×10^-8cm^2/s, respectively.