位置:成果数据库 > 期刊 > 期刊详情页
一种基于模拟退火算法改进的卷积神经网络
  • ISSN号:1000-7180
  • 期刊名称:《微电子学与计算机》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:江南大学数字媒体学院,江苏无锡214122
  • 相关基金:国家自然科学基金(61373055);江苏省2015年度普通高校研究生科研创新计划项目(KYLX15-1191)
中文摘要:

卷积神经网络(CNN)是一种深度学习技术,其目标是构建一个接近人类的智能来执行任何知识的任务.使用基于交叉熵损失函数的模拟退火算法对dropout正则化,即有些单元值被抑制的CNN进行优化训练,而在测试阶段所使用的模型平均方法则同时考虑了保留概率和池化区域内单元值所占概率.在MNIST手写数据库和CMU-PIE的部分图像库的实验结果表明,在同一CNN结构和相同迭代次数时,此方法均优于其他方法,不仅能够得到更好的识别率而且更能防止过拟合的问题.

英文摘要:

CNN is a deep learning method, where its aim is to the goal of artificial intelligence that could perform any intellectual tasks. This paper proposes to optimize CNN with dropout regularization that it can some units became zero using simulated annealing algorithm based on cross entropy loss function, also proposes model averaging method that it combines retaining probability and probability of each unit within pooling region at test time. We do experiments on MNIST handwritten database and part of CMU - PIE database. Under the same structure and the same number of iterations, the method is superior to other methods. It can get a better recognition rate and can be better to overcome the over-fitting problem.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《微电子学与计算机》
  • 中国科技核心期刊
  • 主管单位:中国航天科技集团公司
  • 主办单位:中国航天科技集团公司第九研究院第七七一研究所
  • 主编:李新龙
  • 地址:西安市雁塔区太白南路198号
  • 邮编:710065
  • 邮箱:mc771@163.com
  • 电话:029-82262687
  • 国际标准刊号:ISSN:1000-7180
  • 国内统一刊号:ISSN:61-1123/TN
  • 邮发代号:52-16
  • 获奖情况:
  • 航天优秀期刊,陕西省优秀期刊一等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17909