位置:成果数据库 > 期刊 > 期刊详情页
基于Shearlet变换和均匀局部二值模式特征的协作表示人脸识别算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP391.413[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江南大学物联网工程学院,江苏无锡214122
  • 相关基金:国家自然科学基金资助项目(61373055).
中文摘要:

为了获得人脸图像中更丰富的纹理特征以提高人脸识别率,提出了一种基于Shearlet变换和均匀局部二值模式(ULBP)算子提取特征(Shearlet_ULBP特征)的协作表示方法——Shearlet_ULBP CRC用于人脸识别。首先,人脸图像通过Shearlet变换分解,得到多尺度多方向的幅值域图谱,再经过简单的平均融合,获得融合后的幅值域图谱;然后,通过ULBP算子结合分块的方法获得该Shearlet变换后融合图像的直方图特征;最后,结合协作表示的方法来分类所提取到的特征。该方法可以提取到图像更丰富的边缘以及纹理信息,在ORL、Extended Yale B和AR人脸数据库上进行测试,在图像无遮挡的情况下识别率都达到了99%以上,在有遮挡情况下也都达到了91%以上的识别率。实验结果表明,所提方法不仅对于光照、姿态和表情变化具备较强的鲁棒性,同时能在一定程度上处理人脸图像中存在遮挡的情形。

英文摘要:

To extract richer texture features of face images to improve face recognition accuracy, a new face recognition algorithm based on the Shearlet_ULBP features which are extracted by the histogram of Uniform Local Binary Pattern (ULBP) from the Shearlet coefficients, called Shearlet_ ULBP CRC (Shearlet_ ULBP feature based Collaborative Representation Classification) was proposed. First, Shearlet transform was used to extract the multi-orientational facial information, and the average fusion method was exploited to fuse the original Shearlet features of the same scale. Second, the fused image was divided into several nonoverlapping blocks, and then face image was described by the histogram sequence extracted from all the blocks with the ULBP operator. Finally, the extracted features were fed into the collaborative representation based classifier. The proposed method can extract richer information about edge and texture features. Several experiments were conducted on the ORL, Extended Yale B and AR face databases, more than 99% recognition accuracy was achieved for images without occlusion, while the images are occluded, the recognition accuracy still reached more than 91%. The experimental results show that the proposed method is robust to the illumination, pose and expression variations, as well as occlusions.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679