位置:成果数据库 > 期刊 > 期刊详情页
相似性约束的深度置信网络在SAR图像目标识别的应用
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TN957.51[电子电信—信号与信息处理;电子电信—信息与通信工程]
  • 作者机构:西安电子科技大学雷达信号处理国家重点实验室,西安710071
  • 相关基金:国家自然科学基金(61372132;61201292); 新世纪优秀人才支持计划(NCET-13-0945); 青年千人计划
中文摘要:

特征提取是合成孔径雷达(SAR)图像目标识别的关键环节。SAR图像中存在的相干斑点和非光滑特性使得传统针对光学图像的特征提取方法变得很难应用。虽然可以采用深度置信网络(DBN)自动地进行特征学习,但是该方法属于无监督学习方法,这使得学习到的特征与具体的任务是无关的。该文提出一种叫做相似性约束的受限玻尔兹曼机模型。该模型在学习过程中通过约束特征向量之间的相似性达到引入监督信息的目的。另外,可以将多个相似性约束的受限玻尔兹曼机堆叠成一种新的深度模型,称其为相似性约束的深度置信网络模型。实验结果表明在SAR图像目标识别应用中,该方法相比主成分分析(PCA)以及原始DBN具有更好的识别性能。

英文摘要:

Feature extraction is a key step in SAR image target recognition. The existence of speckle and discontinuity makes the conventional methods for natural images difficult to apply. Although Deep Belief Networks(DBNs) can be used to learn feature representations automatically, they work essentially in an unsupervised way, and hence the learned features are task-irrelevant. A new Boltzmann machine called Similarity constrained Restricted Boltzmann Machines(SRBMs) is proposed, which injects the supervised information into learning process through constraint on the similarity of feature vectors. Furthermore, a deep architecture named Similarity constrained DBNs(SDBNs) is constructed by layer-wise stacking of SRBMs. Experimental results show the proposed SDBN is superior to DBN and PCA in SAR image target recognition.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739