欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
A notable difference between ideal gas and infinite molar volume limit of van der Waals gas
ISSN号:0143-0807
期刊名称:European Journal of Physics
时间:2010.5
页码:671-673
相关项目:几何受限体系量子力学及其曲率效应研究
作者:
Liu, Q. H.|Shen, Y.|Bai, R. L.|Wang, X.|
同期刊论文项目
几何受限体系量子力学及其曲率效应研究
期刊论文 41
同项目期刊论文
量子测量中的讯息增益和耦合强度
量子测量中的前选择和后选择
科学创造的诗性自由
Transformation Between Eigenfunctions of Three Components of Geometric Momentum on Two-Dimensional S
角动量量子数l的升降算符和球谐函数的生成
过冷液态和非晶态金属Pb等温驰豫过程中bcc相的形成和演变特性(英文)
Crossover from Quantum to Boltzmann Statistics for Free Particles in a Single Harmonic Trap
几何动量:二维球面上自由粒子的恰当动量
WAVE PACKETS ON SPHERICAL SURFACE VIEWED FROM EXPECTATION VALUES OF CARTESIAN VARIABLES
Chemical potential for the Bose gases in a one-dimensional harmonic trap
二维球面上蒙日参数化形式的几何动量
二维球面上湮灭算符和几何动量间的关系
Can Dirac quantization of constrained systems be fulfilled within the intrinsic geometry?
Quantum motion on a torus as a submanifold problem in a generalized Dirac’s theory of second-class c
从氢原子的量子力学到两个新的物理学研究方向
Negative probabilities and information gain in weak measurements
Geometric Momentum and a Probe of Embedding Effects
An Enlarged Canonical Quantization Scheme and Quantization of a Free Particle on Two-Dimensional Sph
Distribution of xp in some molecular rotational states
Geometric momentum for a particle constrained on a curved hypersurface
On relation between geometric momentum and annihilation operators on a two-dimensional sphere
A Particle Interacting with V-shaped Potential Decorated by a Dirac Delta Function Interaction at Ce
超低压ITO基壳聚糖电解质纸张薄膜晶体管的制备
爱因斯坦攻击量子力学所凭何据?
位动量及在重力势场中定态的位动量分析
带delta函数势无限深势阱中的能谱研究
On Equivalence of Two Realizations for a Nonlinear Lie Algebra
Geometric momentum in the monge parametrization of two-dimensional sphere
带δ函数势无限深势阱中的能谱研究
A self-adjoint decomposition of the radial momentum operator
Distribution of x · p for quantum states on a circle
虚位移之“虚”表现何在?
对热力学处理光子气体粒子数的一个注记
含时微扰论中的一个基本定理及其在分析非周期含时项的作用
对《“不确定性原理”的一种新讲法》一文的评述