位置:成果数据库 > 期刊 > 期刊详情页
基于神经网络的微生物生长环境关系抽取方法
  • ISSN号:1000-565X
  • 期刊名称:《华南理工大学学报:自然科学版》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:大连理工大学计算机科学与技术学院,辽宁大连116024
  • 相关基金:国家自然科学基金资助项目(61572098,61572102,61562080);国家重点研发计划项目(2016YFB1001103)
中文摘要:

提出一种基于神经网络的方法实现细菌和栖息地的关系抽取,充分利用神经网络的特性实现对隐含的深层特征的自动学习,以避免传统人工特征设计的复杂性和冗余性.该方法利用单词以及实体属性的分布式向量丰富句法和语义信息,使用两个不同神经网络模型从不同角度进行关系抽取,并融合文档级别的分类结果,在生物医学自然语言处理Bio NLP-ST 2016共享任务的BB-event语料上进行实验,取得了不错的F1值,表明该方法在微生物生长环境关系抽取上具有良好的性能.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《华南理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部科技司
  • 主办单位:华南理工大学
  • 主编:李元元
  • 地址:广州市天河区五山路华南理工大学17号楼
  • 邮编:510640
  • 邮箱:journal@scut.edu.cn
  • 电话:
  • 国际标准刊号:ISSN:1000-565X
  • 国内统一刊号:ISSN:44-1251/T
  • 邮发代号:46-174
  • 获奖情况:
  • 本学报荣获1996年国家教委系统优秀科技期刊二等奖...,1999年荣获全国优秀高校自然科学学报及教育部优秀...,2001年荣获广东省优秀期刊奖和广东省优秀科技期刊...,2004年获全国高校优秀科技期刊二等奖,2006年获首届教育部优秀科技期刊奖,2008年荣获第二届教育部优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:22954