针对空间结构的动力灾变控制,以超磁致伸缩材料为核心元件,利用其输出力大、响应速度快、可靠性高、驱动电压低等磁控特性设计出一种将电磁能转化为机械能的磁致伸缩作动杆,并分析其工作原理和设计方法,并通过试验对其进行了输出性能测试;最后运用遗传算法高效的解决了磁致伸缩作动杆在空间结构中的布置位置优化问题。结果表明,磁致伸缩作动杆具有良好的作动效应,通过优化布置的新型作动杆能够安全、可靠、高效的实现空间结构的智能控制,利用遗传算法大大提高了智能结构优化设计的效率。
With focus on the dynamical collapse of spatial structure and taking the giant magnetostrictive material(GMM) as a core element,a new GMM actuator is designed,which can change electromegnetic energy into mechanical energy.The new actuator can make full use of magnetic control characteristics such as high output force,fast response speed,high reliability and low driving voltage.After analyzing the working principle and design method,the output performance test is conducted by experiments and the layout optimization problem of spatial structure is solved by genetic algorithm.In conclusion,the GMM actuator has fine actuator effectiveness,the genetic algorithm can greatly improve the efficiency of intelligent building optimization design,as a result,the new GMM actuator can realize the intelligent control of spatial structure efficiently.