位置:成果数据库 > 期刊 > 期刊详情页
一维下料问题的自适应广义粒子群优化求解
  • ISSN号:1000-565X
  • 期刊名称:《华南理工大学学报:自然科学版》
  • 时间:0
  • 分类:TP278[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]华中师范大学计算机科学系,湖北武汉430079, [2]武汉大学软件工程国家重点实验室,湖北武汉430072, [3]中南民族大学计算机学院,湖北武汉430074
  • 相关基金:国家自然科学基金资助项目(60473014)
中文摘要:

针对现有粒子群优化算法在求解组合优化问题时粒子速度迭代难以定义的问题,首先将粒子群优化算法与遗传算法相结合,利用交叉算子、变异算子,提出一种广义粒子群优化算法来求解一维下料问题;然后引入模拟退火算法作为自适应策略,避免算法陷入局部最优.仿真实验结果表明,采用自适应广义粒子群优化算法求解一维下料问题具有高效性和鲁棒性.

英文摘要:

 In the existing particle swarm optimization algorithms,the iteration of particle velocities is difficult to define for combinatorial optimization problems.In order to solve this problem,this paper proposes a general particle swarm optimization algorithm to solve the one-dimension cutting stock problem.In the proposed algorithm,the existing particle swarm optimization algorithm is combined with the genetic algorithm,the crossover operator and the mutation operator in genetic algorithm are employed,and an adaptive strategy based on the simulated annealing algorithm is introduced to avoid the premature convergence of particle swarm.Simulated results demonstrate that the proposed algorithm is effective and robust in solving the one-dimension cutting stock problem.

同期刊论文项目
期刊论文 30 会议论文 19
同项目期刊论文
期刊信息
  • 《华南理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部科技司
  • 主办单位:华南理工大学
  • 主编:李元元
  • 地址:广州市天河区五山路华南理工大学17号楼
  • 邮编:510640
  • 邮箱:journal@scut.edu.cn
  • 电话:
  • 国际标准刊号:ISSN:1000-565X
  • 国内统一刊号:ISSN:44-1251/T
  • 邮发代号:46-174
  • 获奖情况:
  • 本学报荣获1996年国家教委系统优秀科技期刊二等奖...,1999年荣获全国优秀高校自然科学学报及教育部优秀...,2001年荣获广东省优秀期刊奖和广东省优秀科技期刊...,2004年获全国高校优秀科技期刊二等奖,2006年获首届教育部优秀科技期刊奖,2008年荣获第二届教育部优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:22954