位置:成果数据库 > 期刊 > 期刊详情页
基于局部对比度的自适应PCNN图像融合
  • ISSN号:0254-4164
  • 期刊名称:计算机学报
  • 时间:0
  • 页码:875-880
  • 语言:中文
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西安电子科技大学计算机学院,西安710071
  • 相关基金:本课题得到国家自然科学基金(60702063)和广西壮族自治区青年科学基金(桂科青0640067)资助.
  • 相关项目:多尺度几何分析与人类视觉系统相结合的图像融合技术研究
中文摘要:

提出了一种结合人眼视觉特性的自适应PCNN图像融合新方法,使用图像逐像素的局部对比度做为PC-NN对应神经元的链接强度,经过PCNN点火获得参与融合图像的点火映射图,再通过判决选择算子,选择各参与融合图像中的明显特征部分生成融合图像.该方法除几个主要参数外,其它参数如阈值调整常量等对于融合结果影响很小,解决了PCNN用于图像处理时参数多且调整困难的问题.实验结果表明,融合效果优于经典的小波变换方法和Laplacian塔型方法.

英文摘要:

This paper proposes a new fusion algorithm based on the improved pulse coupled neural network(PCNN) model, the fundamental characteristics of images and the properties of human vision system. Compared with the traditional algorithm where the linking strength of each neuron has the same value and its value is chosen through experimentation, this algorithm uses the local contrast of each pixel as its value, so that the linking strength of each pixel can be chosen adaptively. After the processing of PCNN with the adaptive linking strength, new fire mapping images are obtained for each image taking part in the fusion. The clear objects of each original image are decided by the compare-selection operator with the fire mapping images pixel by pixel and then all of them are merged into a new clear image. Furthermore, by this algorithm, other parameters, for example, A, the threshold adjusting constant, only have a slight effect on the new fused image. It therefore overcomes the difficulty in adjusting parameters in PCNN. Experimental results indicate that the method outperforms the traditional approaches in preserving edge information while improving texture information.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国计算机学会 中国科学院计算技术研究所
  • 主编:孙凝晖
  • 地址:北京中关村科学院南路6号
  • 邮编:100190
  • 邮箱:cjc@ict.ac.cn
  • 电话:010-62620695
  • 国际标准刊号:ISSN:0254-4164
  • 国内统一刊号:ISSN:11-1826/TP
  • 邮发代号:2-833
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:48433