多面体链环是由多个相互镶嵌成的具有多面体形状的一种拓扑几何结构.构筑了一类双交叉多面体链环£(P),给出了该链环L(P)的分支数c(L(P))的一个计算公式:当扭曲次数m是奇数时,c(L(P))=v(P);当扭曲次数m是偶数时,c(L(P))=e(P)+,(P),其中v(P)表示多面体P的顶点数以P)表示多面体P的面数,e(P)表示多面体P的边数。此外,我们得到这类链环都是手性的.
Abstract: Polyhedral links are a topogical geometrical structure with polyhedrat shapes, in tins paper, we construct a Kind of double crossover polyhedral links L(P). Furthermore, we also give a formula of the components number of the links L(F). If the number of twist of m is odd, then c(L(P) ) = v(P) and when the number of twist of m is even then c(L(P) ) = e(P) + f( P), where v(P) denotes the number of vertices of polyhedron P,f(P) the number of faces of polyhedronthe P,e(P) the number of edges of the polyhedron P. In addition, we obtain that the type of polyhedral links are chiral.