位置:成果数据库 > 期刊 > 期刊详情页
基于多类指数损失函数逐步添加模型的改进多分类AdaBoost算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]空军工程大学防空反导学院,西安710051, [2]解放军第463医院,沈阳110042
  • 相关基金:国家自然科学基金资助项目(61273275,61503407).
中文摘要:

多类指数损失函数逐步添加模型(SAMME)是一种多分类的Ada Boost算法,为进一步提升SAMME算法的性能,针对使用加权概率和伪损失对算法的影响进行研究,在此基础上提出了一种基于基分类器对样本有效邻域分类的动态加权Ada Boost算法SAMME.RD。首先,确定是否使用加权概率和伪损失;然后,求出待测样本在训练集中的有效邻域;最后,根据基分类器针对有效邻域的分类结果确定基分类器的加权系数。使用UCI数据集进行验证,实验结果表明:使用真实的错误率计算基分类器加权系数效果更好;在数据类别较少且分布平衡时,使用真实概率进行基分类器筛选效果较好;在数据类别较多且分布不平衡时,使用加权概率进行基分类器筛选效果较好。所提的SAMME.RD算法可以有效提高多分类Ada Boost算法的分类正确率。

英文摘要:

Stagewise Additive Modeling using a Multi-class Exponential loss function (SAMME) is a multi-class AdaBoost algorithm. To further improve the performance of SAMME, the influence of using weighed error rate and pseudo loss on SAMME algorithm was studied, and a dynamic weighted Adaptive Boosting (AdaBoost) algorithm named SAMME with Resampling and Dynamic weighting (SAMME. RD) algorithm was proposed based on the classification of sample's effective neighborhood area by using the base classifier. Firstly, it was determined that whether to use weighted probability and pseudo loss or not. Then, the effective neighborhood area of sample to be tested in the training set was found out. Finally, the weighted coefficient of the base classifier was determined according to the classification result of the effective neighborhood area based on the base classifier. The experimental results show that, the effect of calculating the weighted coefficient of the base classifier by using real error rate is better. The performance of selecting base classifier by using real probability is better when the dataset has less classes and its distribution is balanced. The performance of selecting base classifier by using weighed probability is better when the dataset has more classes and its distribution is imbalanced. The proposed SAMME. RD algorithm can improve the multi-class classification accuracy of AdaBoost algorithm effectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679