Based on the construction bridge of Xiamen-Shenzhen high-speed railway(9-32 m simply-supported beam + 6×32 m continuous beam),the pier-beam-track finite element model,where the continuous beam of the ballast track and simply-supported beam are combined with each other,was established.The laws of the track stress,the pier longitudinal stress and the beam-track relative displacement were analyzed.The results show that reducing the longitudinal resistance can effectively reduce the track stress and the pier stress of the continuous beam,and increase the beam-track relative displacement.Increasing the rigid pier stiffness of continuous beam can reduce the track braking stress,increase the pier longitudinal stress and reduce the beam-track relative displacement,Increasing the rigid pier stiffness of simply-supported beam can reduce the track braking stress,the rigid pier longitudinal stress and the beam-track relative displacement.
Based on the construction bridge of Xiamen-Shenzhen high-speed railway (9-32 m simply-supported beam + 6×32 m continuous beam), the pier-beam-track finite element model, where the continuous beam of the ballast track and simply-supported beam are combined with each other, was established. The laws of the track stress, the pier longitudinal stress and the beam-track relative displacement were analyzed. The results show that reducing the longitudinal resistance can effectively reduce the track stress and the pier stress of the continuous beam, and increase the beam-track relative displacement. Increasing the rigid pier stiffness of continuous beam can reduce the track braking stress, increase the pier longitudinal stress and reduce the beam-track relative displacement. Increasing the rigid pier stiffness of simply-supported beam can reduce the track braking stress, the rigid pier longitudinal stress and the beam-track relative displacement.