证明了满足下列条件的半质环是交换环:1)若对A↓x,y,z∈R,存在整数m=m(x,z)〉1,n=n(x,z)〉1,使得[(x^m y)^n-xy^m,z]∈z(R)则R为交换环. 2)若对A↓x,y,z∈R,存在整数m=m(y,z)〉1,n=n(y,z)〉1,使得[(x^m y)^n+x^m y,z]∈Z(R)则R为交换环.
In this paper,two commutativity theorem on semiprimerings as follows: 1 ) For any x,y,z∈ R are proved,there exist integers m = m(x,z)〉1,n=n(x,z)〉1m such that [ (x^m y)^n -xy^m ,z] ∈ Z(R) then R is commutative. 2) For any x,y,z ∈ R, there exist integers m = m (y,z) 〉 1, n = n (y,z) 〉 1, such that [ (x^m y)^n +x^m y,z] ∈Z(R) then R is commutative.