位置:成果数据库 > 期刊 > 期刊详情页
基于蚁群优化的特征选择新方法
  • ISSN号:1671-8860
  • 期刊名称:《武汉大学学报:信息科学版》
  • 时间:0
  • 分类:P237.3[天文地球—摄影测量与遥感;天文地球—测绘科学与技术]
  • 作者机构:[1]湖北工业大学计算机学院,武汉市李家墩1村,430068, [2]武汉大学遥感信息工程学院,武汉市珞喻路129号,430079
  • 相关基金:国家自然科学基金资助项目(40271094).
中文摘要:

利用蚁群优化算法解决特征选择问题,以获得能代表问题空间的较优特征子集,并能降低分类系统的搜索空间。以航空纹理影像的特征选择和分类问题为例,利用主分量变换和蚁群优化算法分别对原始纹理影像特征集合进行特征提取、选择和分类。结果表明,本文方法不仅能够降低图像特征空间维数,减少图像分类的工作量,而且还可以提高分类识别的正确率。

英文摘要:

A novel approach is presented to solve feature subset selection based on ACO (ant colony optimization algorithm). The approach has the ability to accommodate multiple criteria such as accuracy and cost of classification into the process of feature selection and find the effective feature subset for texture classification. A classifier based on minimum distance is described to classify two types of texture images with feature subset selected by ACO and ex- tracted by PCA (principal component analysis) respectively. Experimental result illustrates that the algorithm can reduce feature dimension, speed the classification of image and improve the recognition rate compared to PCA.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《武汉大学学报:信息科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:武汉大学
  • 主编:刘经南
  • 地址:湖北武汉珞珈山
  • 邮编:430072
  • 邮箱:whuxxb@vip.163
  • 电话:027-68778045
  • 国际标准刊号:ISSN:1671-8860
  • 国内统一刊号:ISSN:42-1676/TN
  • 邮发代号:38-317
  • 获奖情况:
  • 全国优秀科技期刊,全国优秀高校自然科学学报一等奖,湖北省优秀期刊称号
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰地学数据库,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24217