对任意正数入,正整数q1和q2,记Ei={argz=θj|0≤〈θ1〈θ2〈…〈θq1〈2π}及E2={argz=φj|0≤ψ1〈ψ2〈…〈ψq2〈2π},使得E1∩E2=θ,则(1)存在复平面上的λ级亚纯函数.f(z),恰以E1∪E2为其T方向且恰以E2为其Borel方向,(2)存在复平面上的级与下级均为入的亚纯函数g(z),恰以E1∪E2为其Borel方向且恰以E2为其T方向.
Let λ be a positive number, qland q2 be positive integers. Assume that Ei={argz=θj|0≤〈θ1〈θ2〈…〈θq1〈2π}andE2={argz=φj|0≤ψ1〈ψ2〈…〈ψq2〈2π} such that E1 ∩ E2 = 0. Then (1) there exists a meromorphic function f(z) of order A with E1∪ E2 as its T direction and E2 as its Borel direction, (2) there exists a meromorphic function g(z) of order and lower order λ with E1 ∪ E2 as its Borel direction and E2 as its T direction.