应用Nevanlinna基本理论,得到在开平面内的超越亚纯函数f(z)涉及慢增长函数φ(z)的微分单项式φ(z)f(z)f^(k)(z)的定量不等式,推广和改进了王建平和桑汉英等人的相应结果.
In this paper, appling Nevanlinna theory, one quantitative inquality of differential monomials is obtained for transcendental meromorphic function in the open plane, which relates to slowly increasing functions. This result improves the previous corresponding result due to J. P. Wang and H.Y. Sang,etc.