资源阈值对植物的影响是恢复生态学的重要议题.通过近似模拟岷江干旱河谷自然干旱条件下水、氮和磷的阈值,设计析因实验,研究了一个生长季节内小马鞍羊蹄甲幼苗生长、生物生产量、资源利用效率和存活率的变化.结果表明:高水(40%田间持水量)、高磷(24mgP·kg^-1)和低氮(100mgN·kg^-1)处理分别促进了幼苗生长,增加了生物生产量,提高了存活率和水分利用效率,氮磷交互作用显著,水分和养分交互作用不明显.高氮(240mgN·kg^-1)有强烈的负效应,高磷可以增大根面积、根长和根生物量,提高对氮和磷的吸收,缓解高氮的抑制作用.养分利用效率和幼苗根茎比呈显著正相关,并保持相对稳定.高水、高磷和低氮耦合有效地促进了幼苗的生长,而低水、低磷和高氮耦合则明显抑制了幼苗生长.
To study the influence of resources thresholds on plant growth is a major theme in restoration ecology. Based on the simulation of the natural thresholds of soil moisture, nitrogen ( N), and phosphorus (P) under drought condition in the arid valley of Mingjiang River, a full factorial experiment was designed to study the dynamics of Bauhinia faberi seedlings survival rate, growth, biomass production, and resources use efficiency across one growth season. High soil moisture (40% field water capacity), high soil P (24 mg P · kg^-1) , and low N (100 mg N · kg^-1) increased the seedlings survival rate, and promoted the seedlings growth, biomass production, and water use efficiency. There was a significant coupling effect between soil N and P, but the interac- tions between soil moisture and soil N and P were not obvious. High N (240 mg N · kg^-1 ) restrained the seedlings growth markedly, while high P mitigated the negative effects of high N via increasing root area, root length, and root mass to promote the seedlings N and P uptake. The N and P use efficiency across one growth season kept steady, and had significant positive correlation with root/shoot mass ratio. The combination of high soil moisture, low N, and high P promoted the seedlings growth effectively, while that of low soil moisture, low P, and high N inhibited the seedlings growth markedly.