为了探索兔骨精深加工的新方法,提高兔骨的利用率和附加值,该文以70日龄伊拉兔的脊骨、肋骨和腿骨为试验原料(其中脊骨和肋骨的总质量与腿骨的质量比为4:1),经高压蒸煮、蛋白酶酶解、胶体磨研磨、真空冷冻干燥、标准筛过筛、球磨机球磨等处理,采用动态光散射的方法对兔骨粉的平均粒径和分布系数(PDI,particledispersionindex)进行测量,在单因素试验的基础上,用响应面法优化球磨法制备纳米级兔骨粉的工艺参数,并建立二次回归方程。最终得到球磨法的最佳制备工艺为:球磨转速558r/min,球磨时间4.7h,球料比为3.66:1,在此条件下进行3次验证试验,得出兔骨粉的平均粒径为(502.5±11.7)am,PDI为0.497±0.021,与预测值的相对误差均低于5%,表明回归模型有效。研究结果对兔骨和其他畜禽骨的精深加工具有一定的参考价值。
Rabbit meat as a kind of green and healthy meat, contains a lot of nutrients. With the increase of the yield of rabbit meat, rabbit bone and other rabbit meat processing by-products are increasing. Rabbit bone has high nutritional value like other livestock and poultry bone, but it is mostly used for primary processing, such as animal feed, and it has a low rate of deep processing utilization, which results in a great waste of resources. So it is very necessary for us to find a new form of utilization for it. Generally speaking, the smaller the particle size, the greater the porosity and specific surface area, and the better the surface adsorption capacity, solubility and dispersion. In addition, if the particle size is reduced to the nanometer scale, it is likely to produce some characteristics which are different from that of conventional particles, such as small size effect, surface effect and catalysis effect. Therefore, in this study, the response surface method was used to find the best preparation technology of the nanometer rabbit bone meal. The spines, ribs and legs of 70-day-age Ira rabbits were used as raw materials (the ratio of total mass of spines and ribs to mass of legs was 4:1), and multiple treatments were adopted to process these bones, such as high pressure cooking, protease hydrolysis, colloid mill grinding, vacuum freeze drying, standard sieve sieving, and ball milling; the method of dynamic light scattering was used to measure the average particle size and the particle dispersion index (PDI) of rabbit bone meal. On the basis of single factor tests, the response surface method was employed to optimize the preparing parameters of nanometer rabbit bone meal, and the quadratic regression equation was established to find the best processing conditions. The results illustrated that the optional preparation conditions were as follows: Ball-milling speed was 558 r/min, ball-milling time was 4.7 h, and ball-material ratio was 3.66:1. Three validation tests were carried out under these