位置:成果数据库 > 期刊 > 期刊详情页
线性局部切空间排列的传播半监督学习方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]扬州大学信息工程学院,江苏扬州225127, [2]北方激光科技集团有限公司激光应用技术部,江苏扬州225009
  • 相关基金:国家自然科学基金资助项目(61175111);江苏省高校自然科学基金资助项目(10KJB510027)
中文摘要:

针对人脸识别应用中的线性局部切空间排列算法(LLTSA)不能有效利用样本标签信息的问题,提出了一种线性局部切空间排列的标签传播半监督算法(SSLLTSA)。该算法利用标签传播的方法从带有部分标签的样本数据中得到软标签,然后利用软标签构造出软标签散度矩阵来描述数据集的类内紧凑性和类间分离性。SSLLTSA很好地保持了数据集的局部结构,有效地利用了样本中的标签信息。利用YALE和ORL人脸库进行实验,SSLLTSA比传统算法LLTSA的识别率平均分别提高了3.50%和3.89%。特别地,在只存有少量标签样本的情况下,该算法仍能保持良好的分类性能。

英文摘要:

Considering the limit that linear local tangent space alignment( LLTSA) can't take advantage of the sample label information in face recognition application,this paper proposed a semi-supervised dimensionality reduction based on linear local tangent space alignment and label propagation( SSLLTSA). SSLLTSA used label propagation to get the soft labels in the sample data with part of labels. Then,it constructed the soft label based scatter matrices to describe the intra-class compactness and the inter-class separability. SSLLTSA used the information in the label effectively with the well preserved local structure of data. Through the experiments on YALE and ORL,SSLLTSA outperforms based on traditional dimensionality reduction algorithms with maximum average recognition rate by 3. 50% and 3. 89% respectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049