运用不动点指数理论研究了一阶周期系统xi(t)+,(t,z(t))=0,i=1,2,…,凡正解的存在性,其中x=(x1,xn)∈R^n,fiC(R×R^n,R)(R=(-∞,+∞))且满足,(t,·)=,(t+ω,·),i=1,…,n,建立了上述系统正解的若干存在性结果.
Using the fixed point index theory, we study the existence of positive periodic solutions of first-order pe- riodic systems x. (t) +fi ( t,x (t) ) = 0, i = 1,2,…, n, where x = ( x, ,..., x, ) ∈ R^n ,fi ∈ C ( R x R^n, R ) with fi( t, · ) =fi ( t + ω ), i = 1,..., n. Some existence results of the positive periodic solutions for first-order periodic sys- tems are established.