传统数据相关陛分析仅能揭示空气质量与气象因子之间的相关系数,关联规则挖掘方法使用支持度、置信度、作用度、兴趣度等指标能够发掘隐藏在大量监测数据内部的关联规则。文章使用SQL语言实现了Apriori算法,挖掘出研究区内空气主要污染物浓度与气象因子之间的关联规则,定量表示气象因子变化对主要污染物浓度的影响。
Traditional correlation analysis only discoveries correlation coefficient between air quality and meteorological factors while association rule mining technique can dig out association rules hiding in the data by using support, confidence, lift and interest measures. SQL language was used to implement Apriori algorithm, and then mined association rule between air quality and meteorological factors, which quantificationally denoted meteorological influence on principle air pollutants concentration.