位置:成果数据库 > 期刊 > 期刊详情页
轻量级的自学习网页分类方法
  • ISSN号:1000-436X
  • 期刊名称:《通信学报》
  • 时间:0
  • 分类:TP393.8[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京邮电大学计算机学院,北京100876, [2]中国科学院信息工程研究所,北京100093, [3]信息内容安全技术国家工程实验室,北京100093
  • 相关基金:国家高技术研究发展计划(“863”计划)基金资助项目(2011AA010703);国家自然科学基金资助项目(61070026)
中文摘要:

提出了一种自学习的轻量级网页分类方法SLW.SLW首次引入了访问关系的概念,使其具有反馈和自学习的特点.SLW从已有的恶意网页集合出发,自动发现可信度低的用户和对应的访问关系,从而进一步利用低可信度用户对其他网页的访问关系来发现未知的恶意网址集合.实验结果表明,在相同数据集上,相比于传统检测方法,SLW方法可以显著提高恶意网页检测效果,大幅降低平均检测时间.

英文摘要:

A self-learning light-wight (SLW) is proposed.SLW is the first to introduce access relations and have the characteristics of feedback and self-learning.SLW approach starts from the seed set which includes known malicious pages.Then,it automatically figures out users with low credibility based on the seed set and the visit relation database.Finally,the access records of these users are used to identify other malicious pages.Experimental results indicate that SLW approach can significantly improve the efficiency of malicious pages detection and reduce the average detection time compared with other conventional methods.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《通信学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国通信学会
  • 主编:杨义先
  • 地址:北京市丰台区成寿寺4路11号邮电出版大厦8层
  • 邮编:100078
  • 邮箱:
  • 电话:010-81055478 81055481
  • 国际标准刊号:ISSN:1000-436X
  • 国内统一刊号:ISSN:11-2102/TN
  • 邮发代号:2-676
  • 获奖情况:
  • 信息产业部通信科技期刊优秀期刊二等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:25019