位置:成果数据库 > 期刊 > 期刊详情页
Doping-driven orbital-selective Mott transition in multi-band Hubbard models with crystal field splitting
  • ISSN号:1674-1056
  • 期刊名称:《中国物理B:英文版》
  • 时间:0
  • 分类:O511[理学—低温物理;理学—物理] TQ171.1[化学工程—玻璃工业;化学工程—硅酸盐工业]
  • 作者机构:[1]Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China, [2]Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, China, [3]Department of Physics, The University of Texas at Austin, Austin, TX78712, USA
  • 相关基金:Project supported by the National Natural Science Foundation of China (Grant No. 2011CBA00108) and the National Basic Research Program of China (Grant No. 2013CB921700).
中文摘要:

We have studied the doping-driven orbital-selective Mott transition in multi-band Hubbard models with equal band width in the presence of crystal field splitting. Crystal field splitting lifts one of the bands while leaving the others degenerate. We use single-site dynamical mean-field theory combined with continuous time quantum Monte Carlo impurity solver to calculate a phase diagram as a function of total electron filling N and crystal field splitting ?. We find a large region of orbital-selective Mott phase in the phase diagram when the doping is large enough. Further analysis indicates that the large region of orbital-selective Mott phase is driven and stabilized by doping. Such models may account for the orbital-selective Mott transition in some doped realistic strongly correlated materials.

英文摘要:

We have studied the doping-driven orbital-selective Mott transition in multi-band Hubbard models with equal band width in the presence of crystal field splitting. Crystal field splitting lifts one of the bands while leaving the others degener- ate. We use single-site dynamical mean-field theory combined with continuous time quantum Monte Carlo impurity solver to calculate a phase diagram as a function of total electron filling N and crystal field splitting A. We find a large region of orbital-selective Mott phase in the phase diagram when the doping is large enough. Further analysis indicates that the large region of orbital-selective Mott phase is driven and stabilized by doping. Such models may account for the orbital-selective Mott transition in some doped realistic strongly correlated materials.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国物理B:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国物理学会和中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京 中关村 中国科学院物理研究所内
  • 邮编:100080
  • 邮箱:
  • 电话:010-82649026 82649519
  • 国际标准刊号:ISSN:1674-1056
  • 国内统一刊号:ISSN:11-5639/O4
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:406