矩阵的谱半径在特征值估计理论、广义逆矩阵、数值分析以及矩阵序列、矩阵级数的收敛分析、控制理论中都有着极为重要的作用,近年来许多学者都致力于这方面的研究,提出了许多改进的谱半径估计方法,利用Perron补矩阵进行谱半径估计也一直受到广大学者的重视.通过研究矩阵的广义Perron补的性质,给出非负矩阵Perron根界的几个新的估计式.
Spectral radius of matrix plays an extremely important role in characteristic value estimation theory, generalized inverse matrix, numerical analysis, matrix sequence, matrix series convergence analysis and control theory, so that in recent years,many scholars are committed to conduct research in this area and put forward a number of improved spectral radius estimation methods. It is widely valued by a great many of scholars to use generalized Perron complement matrix to estimate spectral radius. By studying the properties of generalized Perron complement, this paper gives several new estimation expressions of Perron root bound.