采用李代数方法研究了线性三原子分子非线性伸缩振动的动力学纠缠,给出了描述纠缠行为的线性熵和冯诺伊曼熵的解析表达式,并分别讨论了初态为Fock态和相干态下的HCN和DCN分子伸缩振动纠缠的动力学性质.
In this paper the dynamical entanglements of anharmonic vibrations in the linear triatomic molecules are researched by the Lie algebraic approach. The linear entropy and the Von Neumann entropy are analytically obtained for both initial Fock states and coherent states. The dynamical properties of entanglement in molecules HCN and DCN are discussed.