位置:成果数据库 > 期刊 > 期刊详情页
CASoRT系统中基于聚集特性的在线流行度预测方法
  • ISSN号:1000-0801
  • 期刊名称:《电信科学》
  • 时间:0
  • 分类:TN929.5[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]清华大学信息科学与技术国家实验室,北京100084, [2]清华大学电子工程系,北京100084
  • 相关基金:国家重点基础研究发展计划(“973”计划)基金资助项目(No.2012CB316000); 国家科技重大专项基金资助项目(No.2015ZX03002010-002)~~
中文摘要:

少数在线热门内容会在短时间内吸引大量用户的访问,并占用大量的网络传输资源。如果能预知内容的热门程度(即流行度)并将热门内容广播给潜在用户,将极大地节省网络传输资源,这正是CASoRT系统的主要功能。通过对国内商业蜂窝通信系统中收集的相关数据进行分析和研究,发现在用户行为、地理位置、数据内容等方面存在明显的聚集特性。根据上述特性给出了两个流行度预测算法,即对数线性和恒定比例模型,并使用最优观察门限改善两算法的性能。通过对两算法仿真结果的比较,对数线性模型表现更优,被选作系统的在线流行度预测方法。

英文摘要:

A small number of online popular contents are often clicked by a great quantity of users in a short period, and take the most of the wireless cellular network traffic. With popularity prediction, the popular contents would be broadcasted to the potential users for saving a lot of transmitting resource, as illustrated in content aware soft real time media broadcast (CASoRT) system. With the data set collected from the Chinese commercial cellular network, the converging property of web contents, users and geographic positions in online news was shown. Then, two prediction schemes such as linear log and constant scaling model were proposed to estimate the popularity of online news, and improved by an optimal observation threshold. After comparison of simulation results, the linear log model performs better.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电信科学》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国通信学会 人民邮电出版社
  • 主编:韦乐平
  • 地址:北京市丰台区成寿寺路11号邮电出版大厦8层
  • 邮编:100078
  • 邮箱:dxkx@ptpress.com.cn
  • 电话:010-81055443
  • 国际标准刊号:ISSN:1000-0801
  • 国内统一刊号:ISSN:11-2103/TN
  • 邮发代号:2-397
  • 获奖情况:
  • 获第二届全国优秀科技期刊评比三等奖(1997年),获中国科协优秀科技期刊二等奖(1997年),在第四次邮电科技期刊质量检查评比中荣获优秀科技...,国家新闻出版总署将《电信科学》列为“中国期刊方...,获第三届中国科技优秀科技期刊奖三等奖(2002年),在第五次通信行业科技期刊质量检查评比中荣获优秀...,在第六次通信行业科技期刊质量检查评比中荣获优秀...,2008年再次入选《中文核心期刊要目总览》,2009年入选中国科技论文统计
  • 国内外数据库收录:
  • 美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12435