燃耗计算在反应堆设计、分析研究中起着重要作用。相比于传统点燃耗算法,切比雪夫有理逼近方法(Chebyshev rational approximation method,CRAM)具有计算速度快、精度高的优点。基于超级蒙特卡罗核计算仿真软件系统Super MC(Super Monte Carlo Simulation Program for Nuclear and Radiation Process),采用切比雪夫有理逼近方法和桶排序能量查找方法,进行了蒙特卡罗燃耗计算的初步研究与验证。通过燃料棒燃耗例题以及IAEA-ADS(International Atomic Energy Agency-Accelerator Driven Systems)国际基准题,初步验证了该燃耗计算方法的正确性,且IAEA-ADS基准题测试表明,与统一能量网格方法相比,桶排序能量查找方法在保证了计算效率的同时减少了内存开销。
Background: Burnup calculation is the key point of reactor design and analysis. It's significant to calculate the burnup situation and isotopic atom density accurately while a reactor is being designed. Purpose: Based on the Monte Carlo particle simulation code SuperMC (Super Monte Carlo Simulation Program for Nuclear and Radiation Process), this paper aimed to conduct preliminary study and verification on Monte Carlo burnup calculations. Methods: For the characteristics of accuracy, this paper adopted Chebyshev rational approximation method (CRAM) as the point-burnup algorithm. Moreover, instead of the union energy grids method, this paper adopted an energy searching method based on bucket sort algorithm, which reduced the memory overhead on the condition that the calculation efficiency is ensured. Results: By calculating the fuel rod bumup problem and the IAEA-ADS (Intemational Atomic Energy Agency - Accelerator Driven Systems) international benchmark, the simulation results were basically consistent with Serpent and other counties' results, respectively. In addition, the bucket sort energy searching method reduced about 95% storage space compared with union energy grids method for IAEA-ADS benchmark. Conclusion: Depending on these results, the correctness of burnup calculations method implemented by this paper has been verified.