位置:成果数据库 > 期刊 > 期刊详情页
基于双层模型的维吾尔语突发事件因果关系抽取
  • ISSN号:0254-4156
  • 期刊名称:《自动化学报》
  • 时间:0
  • 分类:TP[自动化与计算机技术]
  • 作者机构:[1]新疆大学信息科学与工程学院,乌鲁木齐830046, [2]新疆大学网络中心,乌鲁木齐830046, [3]新疆大学软件学院,乌鲁木齐830008
  • 相关基金:国家自然科学基金(61262064,60963017,61063026,61063043),国寒社会科学基金(10BTQ045,11XTQ007)资助
中文摘要:

针对传统事件因果关系识别覆盖范围小和人工标注代价高等不足,提出了一种基于双层模型的维吾尔语突发事件区果关系抽取方法.该方法采用分治思想,将因果关系抽取问题转化为对事件序列的两次模式识别标注.采用Bootstrapping算法,在第一次模式识别时,标注因果关系的语义角色,并将标注的语义角色标签作为新的特征传递给第二层模式识别,用于区果关系边界标注.该方法用于维吾尔语突发事件显式因果关系的抽取准确率为85.39%,召回率为77.53%,证明了本文提出酗方法在维吾尔语主题突发事件因果关系抽取上的有效性和实用性.

英文摘要:

Because the traditional events causal relation has the disadvantages of small recognition coverage and the labeling cost is high, a method for causal relation extraction of Uyghur emergency events is presented based on cascaded model. Utilizing the divide-and-conquer strategy, it converts the problem of causal relation extraction to two pattern recognition labeling of event sequence. By applying the bootstrapping algorithm, the method labels the semantic role of causal relation in the first layer of pattern recognition, then utilizes the semantic role label as a new feature and transfers it to the second layer of pattern recognition for labeling causal relation boundary. This method has been used in the explicit causal relation extraction of Uyghur emergency events, and the results have shown that the precision rate and the recall rate can reach 85.39 % and 77.53 %, indicating the efficiency and practicability of the method of causal relation extraction of Uyghur topic emergency events.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《自动化学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院自动化研究所
  • 主编:王飞跃
  • 地址:北京东黄城根北街16号
  • 邮编:100717
  • 邮箱:aas@ia.ac.cn
  • 电话:010-64019820
  • 国际标准刊号:ISSN:0254-4156
  • 国内统一刊号:ISSN:11-2109/TP
  • 邮发代号:2-180
  • 获奖情况:
  • 1997年获全国优秀期刊奖,1985、1990、1996、2000年获中国科学院优秀期刊二等奖,2002年获国家期刊奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27550