采用集中质量法对一维三组元杆状结构声子晶体带隙特征进行计算,将其与一维二组元杆状结构声子晶体进行比较。研究表明,一维三组元结构声子晶体能有效拓宽带隙频率范围且能降低起止频率。在一维二组元(铝/塑料)声子晶体组份材料铝和塑料之间插入丁腈橡胶前后,保证2个模型的晶格常数a=0.3m、自由度总数300相同。当组份比t为1时,三组元(铝/丁腈橡胶/塑料)声子晶体可以降低第1带隙的起始频率463.7Hz、截止频率2108.1Hz。当三组元声子晶体晶格常数a由0.03m增大到0.42m时,该声子晶体第1带隙起始频率由18943Hz下降到1353.1Hz,截止频率由37799Hz下降到2699.9Hz。如果取三组元声子晶体的晶格常数为0.3m,固定其中铝的长度为0.15m,将丁腈橡胶和塑料的长度之和固定为0.15m,调节丁腈橡胶的长度由0m增大到0.15m时,该声子晶体第1带隙起始频率由2359.8Hz下降到1664.7Hz,截止频率由5888.0Hz下降到4065.3Hz。同时该声子晶体第1带隙宽度变化在低频率区存在一个峰值3043.6Hz。这些变化规律对拓展一维杆状声子晶体的带隙特征具有积极意义。
In this paper, the lumped mass method is employed to computerize the band gap property and comparison with the one-dimensional and two-component structure is made. It is showed in the research that the one-dimensional and three-component phononic crystal is efficient in broadening the frequency range of band gaps and reducing the start stopping frequency. Before and after in- serting NBR into two-component crystal (Aluminum/plastics), guaranteeing lattice constant of two models is 0.3 m and free degree is 300. The band 1 gap starting frequency 463.7 Hz and stopping frequency 2 108.1Hz can be reduced by three-component (Aluminum / NBR / plastic material) phononic crystal when composition ratio is one. When three-component phononic crystal lattice constant cdncreases from 0. 03 m to 0. 42 m, the band 1 starting frequency reduces from 18 943 Hz to 1 353.1 Hz and stopping fre- quency reduces from 37 799 Hz to 2 699.9 Hz. When lattice constant is 0.3 m, the length of Aluminum is fixed value 0.15 m, the total length of NBR and plastics is fixed value 0.15 m and increasing NBR length from 0 m to 0.15 m, the band 1 starting frequency reduces from 2 359.8 Hz to 1 664.7 Hz and stopping frequency reduces from 5 888.0 Hz to 4 065.3 Hz. Meanwhile, there is a peak of 3 043.6 Hz in low frequency zone of the variation of the band 1 gaps, and this is of positive significance for broadening the band property of one-dimensional phononic crystal.