位置:成果数据库 > 期刊 > 期刊详情页
神经网络在船舶柴油机NOx排放特性预测中的应用
  • ISSN号:1006-7043
  • 期刊名称:《哈尔滨工程大学学报》
  • 时间:0
  • 分类:TK421[动力工程及工程热物理—动力机械及工程]
  • 作者机构:[1]大连海事大学,轮机工程学院,辽宁,大连,116026 大连海事大学,轮机工程学院,辽宁,大连,116026 集美大学,轮机工程学院,福建,厦门,361021 大连海事大学,轮机工程学院,辽宁,大连,116026
  • 相关基金:国家自然科学基金资助项目(50276006).
中文摘要:

为了预测船舶柴油机N0x排放特性,从初始权值的选取及学习率动态优化对BP算法进行了改进,通过改进的均匀试验设计法,对少量具有代表性、易于测试的工况进行N0x排放测试,利用BP神经网络建立了船舶柴油机NOx排放特性预测模型并进行了计算,与实测的4种工况进行比较.结果表明,第1工况的N0x排放浓度相对误差为3.7%,N0x比排放的相对误差为4.3%,而其他各工况的N0x排放浓度相对误差在2.4%以内,NOx比排放相对误差在2.9%以内.因此,该模型预测精度较高,与试验结果吻合良好,能有效地预测船舶柴油机N0x排放特性.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《哈尔滨工程大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:哈尔滨工程大学
  • 主编:杨士莪
  • 地址:哈尔滨市南岗区南通大街145号1号楼
  • 邮编:150001
  • 邮箱:xuebao@hrbeu.edu.cn
  • 电话:0451-82519357
  • 国际标准刊号:ISSN:1006-7043
  • 国内统一刊号:ISSN:23-1390/U
  • 邮发代号:14-111
  • 获奖情况:
  • 工信部科技期刊评比"优秀期刊奖",中国高校科技期刊评比"精品期刊奖","北方十佳期刊奖",首届黑龙江省政府出版奖--优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:11823