位置:成果数据库 > 期刊 > 期刊详情页
基于多层感知器的深度核映射支持向量机
  • ISSN号:0254-0037
  • 期刊名称:《北京工业大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:北京工业大学计算机学院,北京100124
  • 相关基金:国家自然科学基金资助项目(61175004);高等学校博士学科点专项科研基金资助项目(20121103110029)
中文摘要:

为改善支持向量机的性能,从深度学习的角度研究核学习的方法,提出了基于多层感知器的深度核映射支持向量机模型(deep kernel mapping support vector machine,DKMSVM)以及相应的学习算法.该模型首先通过多层感知器学习一个从原始输入空间到合适维度空间的核映射代替传统意义上的核函数,然后直接在合适维度空间使用支持向量机进行分类,而不是采用核技巧进行求解.实验结果验证了DKMSVM的有效性.

英文摘要:

To improve the performance of support vector machines ( SVMs),from the deep learning 爷 s point of view,a kernel learning method was studied and a deep kernel mapping support vector machine (DKMSVM ) was proposed based on multi-layer perceptron together with the corresponding learning algorithm. Firstly,a kernel mapping from the original input space to a proper dimensional space through a multilayer perceptron instead of a traditional kernel function was researched in this model. Then a SVM was used to classify in the proper dimensional space without kernel tricks. Experimental results demonstrate the effectiveness of DKMSVM.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京工业大学学报》
  • 中国科技核心期刊
  • 主管单位:北京市教委
  • 主办单位:北京工业大学
  • 主编:卢振洋
  • 地址:北京市朝阳区平乐园100号
  • 邮编:100124
  • 邮箱:xuebao@bjut.edu.cn
  • 电话:010-67392535
  • 国际标准刊号:ISSN:0254-0037
  • 国内统一刊号:ISSN:11-2286/T
  • 邮发代号:2-86
  • 获奖情况:
  • 中国高等学校自然科学学报优秀学报二等奖,北京市优秀期刊,华北5省市优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11924