位置:成果数据库 > 期刊 > 期刊详情页
一种主奇异三元组提取的快速神经网络算法
  • ISSN号:0490-6756
  • 期刊名称:《四川大学学报:自然科学版》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]火箭军工程大学,西安710025, [2]北京理工大学珠海学院,珠海519088, [3]第二炮兵驻中国工程物理研究院代表室,绵阳621900
  • 相关基金:国家自然科学基金(61174207;61374120;61074072;11405267)
中文摘要:

为了对两路高维数据流的互协方差矩阵进行在线奇异值分解,提出了一种快速稳定的主奇异三元组提取神经网络算法.首先,提出了一个新颖信息准则,并且基于该准则推导出了一个动态系统.然后,基于该动态系统,推导出了一种快速稳定的在线神经网络算法.该算法可以提取两路高维数据流的互协方差矩阵的左右主奇异向量.另外,算法中奇异向量的长度会收敛到一个与相应主奇异值相关的值,因而该主奇异值也可以被估计出来.相比于传统算法,该算法可以提取该矩阵的主奇异三元组而非仅仅是主奇异向量.与已有算法相比,该算法具有较低计算复杂度、较高收敛速度和稳定性.

英文摘要:

A fast and stable neural network algorithm for principal singular triplet(PST)extraction is proposed to perform the online singular value decomposition(SVD)of the cross-covariance matrix of two high-dimensional data streams.A novel information criterion is firstly proposed and then based on which a dynamical system is derived.Thereafter,an online fast and stable neural network algorithm is developed from the dynamical system.The proposed algorithm can extract the left and right principal singular vectors of the cross-covariance matrix of two high-dimensional data streams.Moreover,the length of each singular vector will converge to a value that is correlated to the corresponding principal singular value.Therefore the singular value can also be estimated from the length of the singular vector.Compared with the conventional algorithms,the proposed algorithm can extract the PST of the cross-covariance matrix,but not only the singular vectors.Furthermore,the proposed algorithm is low in computation complexity,high in convergence speed and good in stability.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《四川大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:四川大学
  • 主编:刘应明
  • 地址:成都九眼桥望江路29号
  • 邮编:610064
  • 邮箱:
  • 电话:028-85410393 85412393
  • 国际标准刊号:ISSN:0490-6756
  • 国内统一刊号:ISSN:51-1595/N
  • 邮发代号:62-127
  • 获奖情况:
  • 国家“双效”期刊,四川省十佳科技期刊,教育部全国高校优秀学报二等奖(1995,1999),四川省科技优秀期刊一等奖(1996,2000)
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国生物科学数据库,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10542