位置:成果数据库 > 期刊 > 期刊详情页
一种基于非抽样LP的Contourlet变换图像去噪方法
  • ISSN号:1006-8961
  • 期刊名称:中国图象图形学报
  • 时间:0
  • 页码:458-462
  • 语言:中文
  • 分类:P391.41[天文地球—地球物理学]
  • 作者机构:[1]安徽大学电子科学与技术学院,合肥230039
  • 相关基金:国家自然科学基金项目(60772121);安徽省高校青年教师科研资助项目(05020413)
  • 相关项目:基于谱图理论的非刚体形状匹配
中文摘要:

由于提高Contourlet变换冗余性可以抑制去噪结果中的伪Gibbs现象,因此为了提高变换冗余度和避免数据量过大,以进行快速有效的图像去噪,提出了一种基于非抽样LP的Contourlet变换图像去噪方法。该方法首先对带噪图像进行非抽样LP多尺度分解;然后对各子带图像进行临界抽样的DFB分解,再采用尺度相关的分层模型对各子带图像进行阈值处理;最后对处理后的子带图像进行DFB和LP重建,以得到去噪后的图像。与同类型有关方法进行的对比实验表明,在去噪后图像的PSNR值上,该方法比常规Contourlet变换方法至少提高1dB;在完成时间方面,该方法比其他改进方法快1倍以上.

英文摘要:

By enriching redundancy of the contourlet transform, it is possible to weaken pseudo-Gibbs phenomena in the process of image de-noising by thresholding. In order to remove noise from image effectively and quickly, by enriching redundancy of the eontourlet transform and avoiding too much data, a method for image de-noising based on non-subsampled pyramid contourlet transform is proposed. The method decomposes noisy image using nonsubsampled LP for multi-scale, and decomposes sub-image using critical sampled DFB, then performs scale related threshold for shrinkage, finally reconstructs de-noised image. Experiments compared with other related methods show that the proposed method, on the PSNR values of the de-noised images, yields improvements up to ldB over original contourlet transform; on the time consumption, costs half less than other improved methods.

同期刊论文项目
期刊论文 57 会议论文 5
同项目期刊论文
期刊信息
  • 《数码影像》
  • 主管单位:
  • 主办单位:中国图象图形学学会 中科院遥感所 北京应用物理与计算数学研究所
  • 主编:
  • 地址:北京市海淀区花园路6号
  • 邮编:100088
  • 邮箱:
  • 电话:010-86211360 62378784
  • 国际标准刊号:ISSN:1006-8961
  • 国内统一刊号:ISSN:11-3758/TB
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:0