位置:成果数据库 > 期刊 > 期刊详情页
一种半监督流形学习的人脸识别方法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]安徽大学计算智能与信号处理教育部重点实验室,合肥230039
  • 相关基金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.10601001 ,No.60772121);安徽省自然科学基金(No.070412065).
中文摘要:

针对传统线性降维方法忽略数据局部结构特性的问题,提出了一种基于半监督流形学习的方法。针对人脸识别采用图像欧式距离来选择各样本点的K近邻,由此得到修改后无监督判别投影中的邻接矩阵,在传统的无监督判别投影中,融入类标签信息获得几何最优投影。通过在人脸库上的大量比较实验,验证了该方法的准确性和有效性。

英文摘要:

Aiming at the limitation of ignoring the local structure feature of the traditional linear dimensionatity reduction methods, a new semi-supervised manifold learning is proposed.On the basis of the character of the face image,this method gets K-nearest neighbors of each sample by calculating the image euclidean distance, and the adjacency matrix of unsupervised discriminant projection is modified accordingly.Finally,the proposed method that combines labeled samples with modified unsupervised discriminant projection is presented to achieve optimal geometric projection.Extensive experimental results on several public face databases validate the correctness and effectiveness of the proposed approach.

同期刊论文项目
期刊论文 72 会议论文 7 著作 1
期刊论文 57 会议论文 5
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887