位置:成果数据库 > 期刊 > 期刊详情页
机器学习算法在数据挖掘中的应用
  • ISSN号:1004-373X
  • 期刊名称:《现代电子技术》
  • 时间:0
  • 分类:TN957.529.34[电子电信—信号与信息处理;电子电信—信息与通信工程] TP274[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]江苏农林职业技术学院,江苏句容212400
  • 相关基金:国家自然科学基金:基于Sieve Bootstrap方法的长记忆过程变点研究与应用(11301291)
作者: 陈小燕[1]
中文摘要:

针对数据挖掘算法中常用的机器学习型算法进行研究。机器学习型算法特色是运用了人工智能技术,能在大量样本集训练和学习后自动找出运算需要的参数和模式。以机器学习型算法中的人工神经网络为例研究数据挖掘技术,针对学习速度慢、抗干扰能力弱以及容易陷入局部最小值等缺点和传统的遗传算法存在算法早熟以及局部寻优能力弱等问题,提出一种通过改进常规遗传算法的染色体结构和遗传算子,并且通过引入自适应交叉和变异概率来对BP神经网络结构参数进行优化的改进型遗传优化BP神经网络模型。最后通过煤矿空压机故障诊断系统这一实例来研究改进型算法的数据挖掘技术的性能。研究结果表明,改进后的算法建立的诊断模型相比常规神经网络的诊断模型诊断准确率更好,诊断效率更快。

英文摘要:

The machine learning algorithm commonly used in data mining algorithm is studied in this paper. AIT(artificial intelligence technology)is adopted in machine learning algorithm,which can automatically find out the parameters and modes required by operation after a large number of sample set training and learning. The artificial neural network in machine learning algorithm is taken as an example to research the data mining technology. Since the traditional genetic algorithm has the shortcomings of prematurity and weak local optimizing capacity,the improved genetic optimization BP neural network model is proposed by improving the chromosome structure and genetic operator,and by introducing adaptive crossover and mutation probability to optimize neural network structure parameters and solve the problems of slow learning speed,weak anti-jamming capability,and easily falling into local minimum value. Finally,the performance of the improved algorithm is studied by using the fault diagnosis system of air compressor. The research results show that the improved diagnostic model,compared with the conventional neural network diagnosis model,has better diagnostic accuracy and higher diagnostic efficiency.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《现代电子技术》
  • 北大核心期刊(2014版)
  • 主管单位:陕西省信息产业厅
  • 主办单位:陕西电子杂志社 陕西省电子技术研究所
  • 主编:张郁(执行)
  • 地址:西安市金花北路176号陕西省电子技术研究所科研生产大楼六层
  • 邮编:710032
  • 邮箱:met@xddz.com.cn
  • 电话:029-93228979
  • 国际标准刊号:ISSN:1004-373X
  • 国内统一刊号:ISSN:61-1224/TN
  • 邮发代号:52-126
  • 获奖情况:
  • 中国科技核心期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,中国中国科技核心期刊,中国北大核心期刊(2014版)
  • 被引量:37245