空间微动目标3维成像在目标特征信息感知方面具有优势,对于实施空间目标成像、分类、识别等任务具有重要现实意义。据此,该文针对 L 型天线阵列成像系统,提出一种基于改进的粒子群优化的空间微动目标宽带雷达干涉式3维成像方法。首先,分析了目标回波信号的微多普勒特性,建立参数化表征模型。其次,基于所提优化算法重构各天线回波信号的微多普勒相位项,通过对各回波信号相位项的干涉处理,获得干涉相位差,并推导干涉相位差与目标空间坐标的关系,从而重构真实3维坐标,获得微动目标3维图像。相较于已有方法,所提方法基于干涉式成像思想,在无遮挡和有遮挡效应的条件下,均可重构微动目标真实空间坐标和3维图像,并且具有较好的鲁棒性。最后,仿真计算验证了该方法的有效性。
Three dimensional imaging of space micro-motion target has significant advantages on target information awareness, which is crucial to effectively realize space target imaging, classification and recognition. In this paper, through the L type antenna array imaging system, an interferometric three dimensional imaging method for space micro-motion target is proposed based on the improved Particle Swarm Optimization (PSO) algorithm. Firstly, the Doppler effect in the received signal is analyzed, and the corresponding parametric model is established. Then, the Doppler phase term of the received signal is reconstructed by using the proposed optimization method. Through interferometric processing and analyzing the quantitative relationship between interferometric phase difference and real coordinate, the three dimensional coordinates and image can be obtained. Compared with the existing methods, the proposed method can reconstruct the real coordinates and three dimensional image of micro-motion target with and without occlusion effect. It also has good robustness. Finally, simulations validate the effectiveness of the proposed method.