位置:成果数据库 > 期刊 > 期刊详情页
基于多尺度稀疏字典的SAR图像目标识别方法
  • ISSN号:1002-0640
  • 期刊名称:《火力与指挥控制》
  • 时间:0
  • 分类:TN957[电子电信—信号与信息处理;电子电信—信息与通信工程]
  • 作者机构:[1]空军工程大学训练部,西安710051, [2]空军工程大学信息与导航学院,西安710077
  • 相关基金:国家自然科学基金(61471386);陕西省统筹创新工程-特色产业创新链基金资助项目(S2015TDGY0045)
中文摘要:

针对合成孔径雷达目标识别问题,提出一种基于多尺度稀疏字典的SAR图像目标识别方法。稀疏字典选择是稀疏表示中的关键问题之一,该方法利用小波多尺度分析构造过完备稀疏字典,将训练样本图像在小波解析域中进行小波多层分解,充分利用小波多尺度分析突出图像局部特征的特点,并和过完备稀疏表示有效结合组成级联字典。通过求解测试样本相应的稀疏系数矢量并根据系数矢量中对应训练样本类别的重构误差判定目标类型。实验结果表明,该方法在识别前无需对SAR图像进行预处理,具有良好的识别效果。

英文摘要:

A new approach is developed for Synthetic Aperture Radar(SAR)Automatic Target Recognition(ATR)based on multi-scale sparse dictionary.The construction of the dictionary is a crucial issue in SAR ATR under the framework of sparse representation.The wavelet multi-scale analysis is used to construct the sparse dictionary so that local characteristics can be better studied.The training images are decomposed by using wavelet multi-scale analysis in wavelet domain,and the sparse coding for characteristics of each scale is represented by using multi-scale sparse dictionary.The class that the testing sample belonged to is determined by the minimum reconstruction error from the sparse parameter vectors under the framework of the cascade dictionary.The effectiveness of the method is proved by the experimental results.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《火力与指挥控制》
  • 中国科技核心期刊
  • 主管单位:中国兵器工业集团公司
  • 主办单位:北方自动控制技术研究所
  • 主编:高英武
  • 地址:山西太原193号信箱
  • 邮编:030006
  • 邮箱:HLYZ@chinajournal.net.cn;hlyz207@126.com
  • 电话:0351-8725026 8725316
  • 国际标准刊号:ISSN:1002-0640
  • 国内统一刊号:ISSN:14-1138/TJ
  • 邮发代号:22-134
  • 获奖情况:
  • 曾获信息产业部优秀期刊“编辑奖”,连续6年获山西省一级期刊称号
  • 国内外数据库收录:
  • 波兰哥白尼索引,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12079