位置:成果数据库 > 期刊 > 期刊详情页
基于分类间隔的特征选择算法
  • ISSN号:1000-9825
  • 期刊名称:《软件学报》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]国防科学技术大学电子科学与工程学院空间电子信息技术研究所,湖南长沙410073
  • 相关基金:Supported by the National Natural Science Foundation of China under Grant No.60402032 (国家自然科学基金)
中文摘要:

对于二类目标特征选择问题,首先讨论了特征空间的线性可分性问题,并给出了其判别条件;其次,通过借鉴支撑矢量机原理。分析了特征可分性判据的基本性质;最后,依据各特征对分类间隔的贡献大小定义了特征有效率。并以此进行特征选择和特征空间降维.实测数据与网络公开UCI(University of califomia,Irvine)数据库的实验结果表明,与经典的Relief特征选择算法相比,该算法在识别性能和推广能力上明显有所提高.

英文摘要:

Firstly, a distinguishable condition is proposed for separating the features by linear classification hyper surface. Secondly, the paper analyses the properties of the feature linear distinguishable criterion based on support vector machines (SVMs). Finally, the efficiency rate of features are defined by the contribution to classes margin of each feature, and a feature selection algorithm is put forward based on the feature efficiency rate. As experimental results show, validated with the actually measuring data and UCI (University of California, Irvine) data, performance of the new feature selection method, such as classification capability and generalized capability are improved obviously in contrast to the classical Relief method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609