位置:成果数据库 > 期刊 > 期刊详情页
蛋白质编码区的Takagi-Sugeno模糊模型辨识
  • 期刊名称:计算机工程与应用
  • 时间:0
  • 页码:84-86
  • 语言:中文
  • 分类:TN911.72[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]大连海事大学信息工程学院,辽宁大连116026, [2]沈阳化工学院信息工程学院,110142
  • 相关基金:国家自然科学基金 (the National Natural Seienee Foundation of China under Grant No.60671061 );助教校中青年科研启动基金资助项目(沈阳化工学院) (the University Scientific Research Startup Foundation for Young and Middle-aged Assistant Lecturer under Grant No.2,00424) (Shenyang University of Chemical Technology) )
  • 相关项目:最小失配网络的理论研究
作者: 郭烁|朱义胜|
中文摘要:

DNA序列编码区的辨识是基因辨识的一个重要方面。由于基因序列数据量大,导致许多统计辨识算法泛化性差、运算速度慢。根据编码区域序列和非编码区域序列相比有不同的碱基组成,提出将Takagi-Sugeno模型用于DNA序列的编码区辨识。首先,用基于模糊似然函数的模糊聚类算法确定系统的模糊划分数目,进而根据聚类个数建立相应的Takagi-Sugeno局部线性化模型,最后用最小二乘法实现模型结论参数的辨识。该算法不仅可以确定编码区的位置,还可以辨识出密码子第一位碱基的位置,对蛋白质结构的研究是非常重要的。算法简单、高效。仿真结果表明,该算法非常适合编码区辨识和其他编码区辨识算法有可比性。

英文摘要:

An important step in gene identification is to predict coding regions in DNA sequence.Due to the large volume of gene data leading to the problem of poor generalization capability and lower computing speed in many algorithms of prediction of coding region.In this paper,a Takagi-Sugeno model of DNA sequence is built based on the different composition of nucleotides in coding regions and non-coding regions.First,the system is quickly divided into several fuzzy parts using clustering algorithm based on the fuzzy likelihood function.Then,regarding cluster number as a rule number,Takagi--Sugeno fuzzy model has been built.Finally,the consequent parameters of the model are identified associating with LS.The algorithm not only can predict coding regions,but also can identify the first nueleotide of the codon in coding regions.This is very significant for accurate translatiorl into a protein sequence.The algorithm is simple and simulation results show the proposed method is more effective for coding regions prediction than the existing coding region discovery tools.

同期刊论文项目
期刊论文 35 会议论文 19
同项目期刊论文