位置:成果数据库 > 期刊 > 期刊详情页
一种分布式大数据挖掘的快速在线学习算法
  • ISSN号:1000-7024
  • 期刊名称:《计算机工程与设计》
  • 时间:0
  • 分类:TP393.08[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:沈阳师范大学教育技术学院,沈阳110034
  • 相关基金:国家自然科学基金资助项目(60970112)
中文摘要:

在大数据分析处理中,存在诸多问题,如数据类型多,处理效率低,从中获得有用的信息和知识以便指导后续的决策,这是机器学习的最终目标。有效学习样本逐渐增加,据此如何高效渐进地学习分类器是一个非常有价值的问题。大数据分析要求大量数据流的分布式挖掘要实时执行,设计这样独特的分布式挖掘系统:在线适应传入数据的特征;在线处理大量的异构数据;在分布式学习者之间的有限数据访问和通信能力。提出了一个基本的数据挖掘框架,并基于此研究了一种高效的在线学习算法。框架包括一个整体学习者和只能访问不同输入数据部分的多个局部学习者。通过利用在局部学习者学习的相关性模型,提出的学习算法可以优化预测精度而比现有最先进的学习解决方案需要更少的信息交换和计算复杂度。

英文摘要:

In big data analysis and processing,there are many problems,such as data types,low processing efficiency.Getting useful information and knowledge to guide the subsequent decisions is the ultimate goal of machine learning.Effective learning samples increase gradually,so how effectively to learn classifier is a very valuable problem.Big data analysis requires a large amount of data flow to perform real-time distributed mining.It designs unique distributed mining system:online adapting to the characteristics of the incoming data;online processing a large amount of heterogeneous data;the limited data ability to access between distributed learners and communication.It proposes a basic framework of data mining,and based on this it researches a kind of efficient online learning algorithm.Framework contains the whole different learners and local learners which can only have access to the input data.By using the local correlation model,the learning algorithm can optimize the prediction precision than the existing advanced learning solutions,which requires less exchange of information and computational complexity.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与设计》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团
  • 主办单位:中国航天科工集团二院706所
  • 主编:汤铭瑞
  • 地址:北京142信箱37分箱
  • 邮编:100854
  • 邮箱:ced@china-ced.com
  • 电话:010-68389884
  • 国际标准刊号:ISSN:1000-7024
  • 国内统一刊号:ISSN:11-1775/TP
  • 邮发代号:82-425
  • 获奖情况:
  • 中国科学引文数据库来源期刊,中国学术期刊综合评价数据库来源期刊,中国科技论文统计与分析用期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:45616