位置:成果数据库 > 期刊 > 期刊详情页
基于优化协同过滤与加权平均的群推荐方法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术] TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]合肥工业大学管理学院,合肥230009, [2]合肥工业大学过程优化与智能决策教育部重点实验室,合肥230009
  • 相关基金:国家自然科学基金(No.71371062); 国家重点基础研究发展计划(973)(No.2013CB329603)
中文摘要:

为面向群体用户提供推荐,提高群体用户的信息搜索效率,提出了一种新颖的基于优化协同过滤与中位数加权平均的群推荐方法,综合考虑了项目的评分相似性与类型相似性,通过集成项目相似性与用户相似性预测出群体用户对项目的评分;在集结群体用户评分时,采用基于中位数的加权平均集结策略消除个别用户评分差异过大带来的影响,综合考虑群体用户在评分过程中的作用。通过预测项目评分实验与集结用户评分实验,结果表明,用新方法得到的准确率均高于常用的传统方法,从而表明该方法是有效的。

英文摘要:

In order to recommend items to a group of users as well as improve their information searching efficiency, a novel group recommendation method based on optimized collaborative filtering and the median-based weighted average is proposed. The method takes items' rating similarity and type similarity into consideration, integrates item similarity and user similarity to predict the values of items which users have not yet rated. Then it uses median-based weighted average strategy to aggregate the group of users' ratings, taking the effects when users rating into consideration. In the end two experiments to predict items' ratings and integrate users' ratings are given out respectively. The results show that two algorithms are better than traditional ones in terms of accuracy, indicating that the strategy proposed is valid.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887