位置:成果数据库 > 期刊 > 期刊详情页
一种高阶导数有理插值算法
  • ISSN号:1671-5489
  • 期刊名称:《吉林大学学报:理学版》
  • 时间:0
  • 分类:O241.3[理学—计算数学;理学—数学]
  • 作者机构:[1]阜阳师范学院数学与统计学院,安徽阜阳236037, [2]合肥工业大学数学学院,合肥230009
  • 相关基金:国家自然科学基金(批准号:71371062); 安徽省自然科学基金(批准号:1408085MD70); 安徽省高校自然科学研究项目(批准号:2014KJ011)
中文摘要:

针对目前高阶导数切触有理插值方法计算复杂度较高的问题,利用多项式插值基函数和多项式插值误差的性质,给出一种不仅满足各点插值阶数不相同且插值阶数最高为2的切触有理插值算法,并将其推广到向量值切触有理插值中.解决了切触有理插值函数的存在性及算法复杂性问题,并通过数值实例证明了算法的有效性.

英文摘要:

In view of the higher computational complexity of the osculatory rational interpolation method of higher derivative mostly based on the idea of generalized vandermonde matrix, by means of basis function of polynomial interpolation and error nature of polynomial interpolation, we proposed an osculatory rational interpolation algorithm that not only satisfies different interpolation order but also makes the toppest of interpolation order equal 2, and it also meets the vector-valued osculatory rational interpolation. It solves the problem of the existence of osculatory rational interpolation function and complexity of algorithm. In the end, we illustrated the effectiveness of the algorithm with a numerical example.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《吉林大学学报:理学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:吉林大学
  • 主编:裘式纶
  • 地址:长春市南湖大路5372号
  • 邮编:130012
  • 邮箱:sejuj@mail.jlu.edu.cn
  • 电话:0431-88499428
  • 国际标准刊号:ISSN:1671-5489
  • 国内统一刊号:ISSN:22-1340/O
  • 邮发代号:12-19
  • 获奖情况:
  • 在吉林省、教育部及全国优秀科技期刊评比中共获奖1...,2008年被评为"中国精品科技期刊", 并获教育部"第...,2009年获全国高校科技期刊优秀编辑质量奖,并被吉...,2008年和2009年连续两次获"中国科技论文在线优秀期...,2010年获教育部"第三届中国高校优秀科技期刊"奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:6314