位置:成果数据库 > 期刊 > 期刊详情页
基于非监督学习神经网络的自动调制识别研究与实现
  • ISSN号:1000-386X
  • 期刊名称:《计算机应用与软件》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]解放军信息工程大学信息工程学院,河南郑州450002
  • 相关基金:国家高技术研究发展计划项目(2006AA01Z146)
中文摘要:

以非监督学习神经网络为主要研究对象,描述自组织网络的基本模型,分析传统自组织网络的训练算法,提出了一种基于自组织特征映射SOFM(Self-Organizing Feature Map)神经网络的通信信号自动调制识别方法。方法改进了训练算法中的学习率函数和邻域函数,提高了算法的收敛速度和性能,并将其应用在通信信号调制识别中。仿真实验检验基于SOFM神经网络的调制识别方法的性能,并与后向反馈(BP)神经网络加以比较,结果表明SOFM神经网络的调制识别方法具有较高的识别精度,改进后的训练算法提高了识别的有效性。

英文摘要:

This paper focuses on the unsupervised learning neural networks.Firstly,the basic structure of self-organised neural network is described.Then the traditional training algorithm of self-organised neural network is analysed,and the automatic modulation recognition method for communication signals based on self-organised feature map(SOFM) neural network is presented.The method improves the learning rate function and neighbourhood function of the training algorithm,enhances the convergence speed and performance of the algorithm,and has been applied in the modulation recognition of communication signals.Simulations test checks the performance of SOFM neural network based modulation recognition method,and compares it with the back-propagation(BP) neural network.Results illustrate that the modulation recognition method based on SOFM neural network has higher recognition precision,and the improved training algorithm has ameliorated its effectiveness of recognition.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用与软件》
  • 北大核心期刊(2011版)
  • 主管单位:上海科学院
  • 主办单位:上海市计算技术研究所 上海计算机软件技术开发中心
  • 主编:朱三元
  • 地址:上海市愚园路546号
  • 邮编:200040
  • 邮箱:cas@sict.stc.sh.cn
  • 电话:021-62254715 62520070-505
  • 国际标准刊号:ISSN:1000-386X
  • 国内统一刊号:ISSN:31-1260/TP
  • 邮发代号:4-379
  • 获奖情况:
  • 全国计算机类中文核心期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2011版),中国北大核心期刊(2000版)
  • 被引量:27463