这篇论文为不可压缩的概括牛顿的液体流动(幂定律模型) 论述一个混合有限 volume/finite 元素方法。并置(即非蹒跚) 变量的安排在未组织的三角形的格子上被使用,并且一个部分步设计方法被申请联合的速度压力。以房间为中心的有限体积方法被采用到 discretize 为压力泊松方程的动量方程和基于顶点的有限元素。动量插值方法被用来压制 unphysical 压力摆动。数字实验证明当前的混合计划在空间和时间有第二顺序精确性。在盖驱动的洞并且在平行的墙为之间的流动上的结果牛顿并且幂定律模型也在对出版答案的好同意。
This paper presents a hybrid finite volume/finite element method for the incompressible generalized Newtonian fluid flow (Power-Law model). The collocated (i.e. non-staggered) arrangement of variables is used on the unstructured triangular grids, and a fractional step projection method is applied for the velocity-pressure coupling. The cell-centered finite volume method is employed to discretize the momentum equation and the vertex-based finite element for the pressure Poisson equation. The momentum interpolation method is used to suppress unphysical pressure wiggles. Numerical experiments demonstrate that the current hybrid scheme has second order accuracy in both space and time. Results on flows in the lid-driven cavity and between parallel walls for Newtonian and Power-Law models are also in good agreement with the published solutions.