位置:成果数据库 > 期刊 > 期刊详情页
玉米拔节期冠层叶绿素含量多光谱图像检测
  • ISSN号:1002-6819
  • 期刊名称:《农业工程学报》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:中国农业大学"现代精细农业系统集成研究"教育部重点实验室, 中国农业大学农业部农业信息获取技术重点实验室, 美国华盛顿州立大学精细农业及农业自动化研究中心
  • 相关基金:国家863项目(2013AA102303);自然科学基金(31271619,31501219)
中文摘要:

为了探索大田玉米冠层叶片叶绿素指标的快速检测方法。采用自主研发的2-CCD多光谱图像成像系统采集了大田玉米拔节期冠层图像,并同步获取了样本叶绿素含量指标SPAD值。对多光谱图像进行了平滑滤波,并基于HSI颜色空间实现了冠层图像的分割。提取了玉米冠层可见光(blue(B),green(G),red(R);400~700 nm)和近红外(near-infrared,NIR,760~1 000 nm)4个波段平均灰度值并计算了平均灰度值计算比值植被指数(RVI,ratio vegetation index)、归一化植被指数(NDVI,normalized difference vegetation index)、修改型二次土壤调节植被指数(MSAVI2,modified soil-adjusted vegetation index)等8种常见植被指数作为图像检测参数。分析了这12个检测参数与叶绿素指标之间的相关性,讨论了图像检测参数的多种组合,建立了叶绿素指标的多元线性回归分析(MLRA,multiple linear regression analysis)模型。研究结果表明:R、G、B波段的平均灰度值与叶绿素指标成较高负相关,相关系数分别为-0.73,-0.71和-0.71,植被指数中相关性较好的是NDVI、MSAVI2和RVI,相关系数分别为0.83、0.81和-0.81。基于这6个参数组合建立的叶绿素指标估算模型拟合度最好,其建模集决定系数为0.79,验证集决定系数为0.71,研究结果为无损检测玉米拔节期叶绿素含量提供了支持。

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业工程学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业工程学会
  • 主编:朱明
  • 地址:北京朝阳区麦子店街41号
  • 邮编:100125
  • 邮箱:tcsae@tcsae.org
  • 电话:010-59197076 59197077 59197078
  • 国际标准刊号:ISSN:1002-6819
  • 国内统一刊号:ISSN:11-2047/S
  • 邮发代号:18-57
  • 获奖情况:
  • 百种中国杰出学术期刊,中国精品科技期刊,中国科协精品科技期刊工程项目期刊,RCCSE中国权威学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国食品科技文摘,中国北大核心期刊(2000版)
  • 被引量:93231