位置:成果数据库 > 期刊 > 期刊详情页
基于视觉显著性图的黄瓜霜霉病识别方法
  • ISSN号:1000-1298
  • 期刊名称:《农业机械学报》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] S24[农业科学—农业电气化与自动化;农业科学—农业工程]
  • 作者机构:中国农业大学信息与电气工程学院,北京100083
  • 相关基金:国家自然科学基金项目(31271619)
中文摘要:

为提高黄瓜霜霉病叶部病害机器自动识别的准确性和鲁棒性,提出了一种基于视觉显著性图的黄瓜叶部霜霉病识别方法。首先将图像从RGB色彩空间变换到HSV色彩空间中进行色彩修正,再变换回RGB空间利用R、G、B分量的线性组合生成视觉显著性图,最后通过对生成的视觉显著性图进行阈值分割以识别病害区域。利用从北京市北部郊区日光温室采集到的50幅具有典型霜霉病特征的黄瓜叶片原始图像进行实验,结果表明,该方法能较为准确地从叶部彩色图像中识别出霜霉病病斑区域,平均误分率为6.98%,优于K-means法(11.38%)和OTSU法(15.98%);平均运行时间0.661 4 s,少于K-means法的1.424 9 s;运行时间的均方根误差为0.051 5 s,鲁棒性优于K-means硬聚类算法。

英文摘要:

In order to increase the efficiency and robustness of automatic recognition of cucumber downy mildew disease,a disease recognition method was proposed in the fashion of visual saliency. Firstly,image sample of RGB color space was transformed into HSV color space,and a color correction method was performed on the sample image. Then the color-corrected image was transformed from HSV color space back to RGB color space,and a linear combination of the R,G,B components was carefully chosen to generate visual saliency map of disease area on the leaf image. Finally,based on the visual saliency map,the disease area was extracted from the leaf area of original image. 50 samples for testing were acquired from warm houses in northern Beijing from September to October,2015. Samples were taken by consumer grade digital cameras and mobile-phones with camera module. In order to focus on the problem of disease recognition,original leaf images' background were removed manually and uniformly fitted into 512 pixel by 512 pixel squares before experiments. Result of testing shows that this method can effectively extract disease area from color image with relatively high accuracy,the average of misclassification rate is 6. 98%,better than K-means( 11. 38%) and OTSU( 15. 98%); the average running time is 0. 661 4 s,faster than K-means( 1. 424 9 s); the RMSE of running time is 0. 051 5 s,robuster is better than K-means. Result also shows that CC( Color correction) method makes better results than original proposed disease recognition method proposed,mis-classification rate was decreased from 8. 63%( Saliency method) to 6. 98%( CC + Saliency method).

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业机械学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业机械学会 中国农业机械化科学研究院
  • 主编:任露泉
  • 地址:北京德胜门外北沙滩一号6号信箱
  • 邮编:100083
  • 邮箱:njxb@caams.org.cn
  • 电话:010-64882610 64867367
  • 国际标准刊号:ISSN:1000-1298
  • 国内统一刊号:ISSN:11-1964/S
  • 邮发代号:2-363
  • 获奖情况:
  • 荣获中国科协优秀期刊二等奖,1997~2000年连续4年获中国科协择优资金,被列入中国期刊方阵,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:42884