雪粒径是影响全球/局地能量收支和表征积雪水热状态的重要参数,大面积监测和估算雪粒径的分布及大小对于全球/局地气候变化和水资源管理具有重要意义。目前遥感技术已成为大面积监测和估算雪粒径的重要手段。针对雪粒径的遥感监测与估算,该研究采用辐射传输模型模拟雪面可见光-近红外波段的光谱曲线,经过分析光谱曲线并结合一阶微分和累计差异值选取对雪粒径敏感的波段和积雪指数,建立单变量雪粒径高光谱遥感估算模型,并用地面实测数据进行验证,结果表明,单波长1 030nm,1 260nm和归一化差值积雪指数(460和1 030nm)构建的估算模型预测精度较高,雪粒径估算值与实测值的相关斜率分别为1.37,0.61和0.62,R2分别为0.82,0.86和0.93,RMSE分别为55.65,50.83和35.91μm,可用于雪粒径的估算研究。研究成果为雪粒径的高光谱遥感反演提供科学依据。
Snow grain size is a key parameter not only to affect the energy budget of the global or local region but also characterizing the status of snow vapor transport and temperature gradient.It is significant to monitor and estimate the snow grain size in large area for global or local climate change and water resource management.Recently,remote sensing technology has become a useful tool for snow grain size monitoring and estimating.In the present paper,the estimate models were built based on simulating the snow surface spectral reflectance curve in visible-infrared region and the sensitive bands and snow indices for snow grain size were selected.These models help estimate snow grain size by hyperspectral remote sensing.Through validating with ground true data,the results show that these models have higher explorative accuracy using 1 030,1 260 nm and normalized difference snow index(460 and 1 030 nm).In addition,the correlation slopes of estimated and observed valves are 1.37,0.61 and 0.62,respectively.R2 are 0.82,0.86 and 0.93 and RMSE are 55.65,50.83 and 35.91 μm,respectively.The result can provide a scientific basis for snow grain size monitoring and estimating.