位置:成果数据库 > 期刊 > 期刊详情页
用高分一号卫星数据识别多时相山区积雪
  • ISSN号:1000-3177
  • 期刊名称:《遥感信息》
  • 时间:0
  • 分类:TP79[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]南京大学地理信息科学系,南京210023, [2]江苏省地理信息资源开发与利用协同创新中心,南京210023, [3]莫纳什大学土木工程系,澳大利亚Clayton Victoria 3168
  • 相关基金:国家高分辨率对地观测系统重大专项(95-Y40B02-9001-13/15-04);国家自然科学基金(41271353)
中文摘要:

针对目前从高分辨率遥感图像中提取多时相山区积雪信息精度较低、效率不高的问题,基于高分一号卫星数据,提出了一种基于多视图的多时相山区积雪提取方法。该方法基于GF-1卫星3个时相的图像数据,将多时相遥感图像视为多个视图,通过空间约束构建积雪识别多视图。针对山区阴影的巨大影响的问题,提出了将积雪分为非阴影区积雪和阴影区积雪2个类别,分别进行训练样本的选取。仅通过一次样本选取,运用旋转森林算法,基于多视图构建面向多时相的识别模型,实现多时相遥感图像的积雪识别。实验结果表明,3个时相识别结果的F值分别达到0.941、0.951和0.945,精度较高,且具有较高的效率,具有实际应用价值。

英文摘要:

It is difficult to extract snow cover from multi-temporal high spatial resolution remotely sensed imagery, where the precision and efficiency is relatively low. This study provides a method which can extract multi-temporal snow cover from GF-1 based on multi-view model. Based on three GF 1 satellite images, single image was treated as a view, and multi views were built for multi-temporal snow recognition through extracting the unchanged part of multi-temporal images. In order to overcome the severe influence of terrain shadows,labeled samples of snow in sunlight and snow in shadow were selected separately. Only by selecting labeled samples once, three classifiers were built on different views based on rotation forest algorithm. Then, three classifiers were applied to the classification of three multi temporal images. The accuracy verification showed that the F score of three images are 0. 941,0. 951,and 0.945,respectively. In addition, the efficiency is relatively high.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《遥感信息》
  • 中国科技核心期刊
  • 主管单位:国家测绘局
  • 主办单位:科技部国家遥感中心 中国测绘科学研究院
  • 主编:张继贤
  • 地址:北京市海淀区北太平路16号
  • 邮编:100039
  • 邮箱:remotesensing@casm.ac.cn
  • 电话:010-88217813
  • 国际标准刊号:ISSN:1000-3177
  • 国内统一刊号:ISSN:11-5443/P
  • 邮发代号:82-840
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:8820